
A model for many-body interaction effects in open quantum dot systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 147

(http://iopscience.iop.org/0953-8984/15/2/314)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 147–158 PII: S0953-8984(03)54206-0

A model for many-body interaction effects in open
quantum dot systems

K M Indlekofer1, J P Bird, R Akis, D K Ferry and S M Goodnick

Department of Electrical Engineering and Center for Solid State Electronics Research,
Arizona State University, Tempe, AZ 85287-5706, USA

Received 2 October 2002
Published 20 December 2002
Online at stacks.iop.org/JPhysCM/15/147

Abstract
We discuss the influence of the electron–electron interaction on transport
properties of open quantum dot systems. Based on the idea of the Anderson
model, we present interaction-induced temperature-dependent corrections to
the conductance beyond the single-particle picture.

1. Introduction

In contrast to a quantum dot in the tunnelling regime, where the discrete eigenstates of the
corresponding closed system give rise to sharp transmission resonances through the system,
usually most of these resonances in open dots are broadened out due to a large imaginary part
of the coupling self-energy to the leads. Nevertheless, even in the open system, some of the
localized resonances are persistent, strongly depending on the geometry of the open system,
especially dot shape and lead positions [1–4]. These persistent states tend to correspond
to periodic orbits of the classical chaotic system [5, 6]. The projection of the propagating
single-particle states of the open dot system onto the discrete eigenstates of the closed system
reflects strong resonances at individual, discrete closed-dot states, representing exactly those
states of localized charge inside the quantum dot [3, 4]. Recent experimental results [7–11]
investigating the temperature dependence of conductance fluctuations in open dots and dot
arrays show good agreement with the single-particle theory [1–3, 12] at high temperatures. At
lower temperatures however, deviations from the single-particle picture have been observed,
with clearly resolved metal-like and insulator-like phases in the conductance maxima and
minima, respectively [7–11]. Magneto-transport measurements and results for reference
samples without quantum dots clearly rule out weak localization effects of the electron gas
as the origin of the deviations [10, 13, 14]. It has been suggested that this finding could
be attributed to a confinement-enhanced electron interaction [13]. (One has to note that
Coulomb blockade effects of the tunnelling regime are quenched in open dot systems.) Hence,
many-body interaction effects [15] analogous to those seen in quantum dots in the tunnelling
regime [16–21] might also play an important role in open dot systems.
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In this paper, we present a many-body model based on the Anderson model [16–22] and the
idea of an enhanced electron–electron interaction inside the open quantum dot in the vicinity of
a resonant state. This approach is physically based on the charge resonance inside the quantum
dot observed in single-particle simulations [3, 4] considering the projection of resonant states
to closed quantum dot states.

In the following, we will first present a short discussion of the physics of open quantum
dot systems. The next section defines the many-body model interaction Hamiltonian and the
non-equilibrium many-body density-matrix approach employed to describe transport through
an open system. A subsequent mean-field approach to the model helps to significantly reduce
the dimensionality of the problem. We will show numerical simulations for the temperature
dependence of the conductance corrections due to the interaction. We find that a characteristic
temperature [20, 21, 23] can be defined in the model to characterize two temperature regimes.
Furthermore, exchange-enhanced spin polarization is studied.

2. The physics of open quantum dots

In this section, we briefly review some of the previously established features of electron
transport in open quantum dots, which will provide the justification for the assumptions that
underlie our many-body transport model. It is well understood that the energy of electrons in
weakly coupled quantum dots is quantized into a series of discrete energy levels [24]. It is
generally less well appreciated, however, that at least some of the states of this spectrum remain
resolved in open semiconductor dots, which are coupled to their external reservoirs by means
of few-mode quantum point contact leads [1, 2, 25–28]. The key feature here is a non-uniform
broadening of the eigenstates, which arises when the dot is open via the point contacts. The
reason for this non-uniform broadening has been discussed in some detail, but is basically
a consequence of quantum mechanical collimation; in order for electrons to enter or leave
the dot, they must pass enter the associated point contact at an angle, so that their transverse
momentum component matches one of the quantized values associated with the different one-
dimensional subbands in the lead [1]. At certain energies, this results in a resonant trapping
of Fermi-level electrons in the dot, so that they are only able to escape the dot on a timescale
several orders of magnitude longer than the direct transit time across the dot [28]. It is this
trapping at specific energies that leads us to assume below a strong enhancement of the effective
electron interaction in the dot, at certain energies. In particular, a critical consequence of this
trapping is that, even though the dot is open, electrons are not able to flow freely into, or out
of, it. The signature of this resonant trapping is easily identified in experiment, in which a
magnetic field, or a gate voltage variation, may be used to sweep the resolved density of states
past the dot, giving rise to oscillations in the conductance [1, 2, 25, 26]. The basic periodicity of
these oscillations has previously been successfully interpreted [2, 25] in terms of the presence
of strongly scarred wavefunction states, which recur in intensity as the external parameter
(magnetic field or gate voltage) is varied. In this paper, however, we wish to consider the
many-body implications of this basic transport picture.

3. Interaction model

The Anderson model [16–22] describes the coupling of a single impurity level with an on-site
electron–electron interaction to a one-dimensional lead by use of a tight-binding single-particle
basis. In our case, the single impurity is interpreted as a quantum dot coupled to two open
leads. The impurity level then describes the discrete, closed dot state corresponding to a single
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persistent open dot resonance. In order to obtain a numerically tractable many-body Fock
space model for the interacting open quantum dot system, we reformulate the Anderson model
in the eigenbasis of the coupled dot–lead system without interaction. The choice of this open
eigenbasis accounts for the fact that the system is open. These propagating 1D eigenstates
ψnkσ (indexed by the point contact wavenumber k, lateral mode number n and spin σ) of
the continuous spectrum typically exhibit Fano resonances in the transmission probability.
tnkσ [29], reflecting resonances of the open dot. Possible eigenstates of the discrete spectrum
inside the open quantum dot (i.e. fully bound states in the lower energy region) will not be
further discussed here, since we assume that they are always occupied and only contribute to the
single-particle potential of the system. In the following, we assume that the dispersion relation
εnkσ and the transmission probability tnkσ of the propagating states through the open dot are
already known from single-particle simulations [1–3, 12] for the given realistic 3D potential
(and the external magnetic field). The many-body interaction part (with the leading Coulomb-
matrix elements V(nkσ )(n′k′σ ′)) in the total Hamiltonian is assumed to be diagonal in Fock space
concerning the propagating mode single-particle base. Note that we consider a full many-body
state space in this approach. (The chosen interaction Hamiltonian is not fully equivalent to the
original tight-binding interaction part of the Anderson Hamiltonian [22, 23] transformed to the
new base. However, in contrast to the diagrammatic approach to the Anderson system which
considers the coupling between the dot and the reservoirs as a perturbation, we fully account
for this coupling by choosing the open eigenbasis.) The crucial step in constructing these
interaction matrix elements is based on the physical argument that the on-site repulsion in the
tight-binding Anderson model is transformed to an energetically peaked interaction between
propagating states in the vicinity of each resonance. Furthermore, we can also justify a peaked
interaction in the continuum of propagating states based purely on the existence of resonant
states. Considering the projection amplitudes of single-particle states of the open dot onto the
discrete closed dot states [3, 4] we see a resonance of charge (i.e.,

∫
dot |ψ|2 d3x) inside the

quantum dot. This means that the resulting interaction matrix elements obviously exhibit a
resonance. We therefore want to interpret the peaked interaction term as an excess interaction
due to the localization of charge inside the quantum dot with each resonant state. (One has to
note that, although the quantum dot is open, we do not deal with Coulomb interaction terms of
an unrestricted electron gas. The interaction effects we consider here arise due to a resonantly
trapped charge at certain energies, quasi-bound within the quantum dot between two quantum
point contacts.) Finally, the effective model Hamiltonian (normalized to −kB T ) for the open
dot system reads (compare with [30])

Ĥ = −β

[∑
n,k,σ

(εnkσ − µk)c
+
nkσ cnkσ + 1

2

∑
(nkσ ) �=(n′k′σ ′)

V(nkσ )(n′k′σ ′)c
+
nkσ cnkσ c+

n′k′σ ′cn′k′σ ′

]
, (1)

with β = 1/kB T , µk the chemical potential for wave k and cnkσ the annihilation operator.
Note that the applied voltage applied between the injecting electron reservoirs is contained
within the varying chemical potential µk inside the structure, depending upon the direction of
the incident wave propagation (i.e., k > 0 or k < 0). The discrete sum over k reflects the finite
spatial extent of the system necessary for numerical reasons. (Care must be taken to chose
the corresponding energy spacing �ε(�k) small compared to kB T .) Additional de-phasing
effects inside the open dot structure have been neglected in this model, which is adequate for
experimental situations where the corresponding phase-coherence length is larger than typical
classical paths through the sample.

If Nk denotes the total number of k points and Nn the number of lateral modes, the Fock
space will become 22Nk Nn dimensional. The continuum limit then corresponds to Nk → ∞.



150 K M Indlekofer et al

Furthermore, we must ensure that the total interaction sum

Vtot = 1
2

∑
(nkσ ) �=(n′k′σ ′)

V(nkσ )(n′k′σ ′), (2)

scales with Nk in the same manner as the single-particle term in the Hamiltonian (which is
simply proportional to Nk). This can be accomplished by introducing a scaling factor in
V(nkσ )(n′k′σ ′), reflecting the required invariance under this ‘size transformation’ of the system.
This implies that the total interaction energy per state V state

tot = Vtot/(2Nk Nn) converges for
Nk → ∞. For the interaction matrix element, we employ the following model expression in
the vicinity of a resonance E0 (where εnk is the spin-independent part of εnkσ ):

V(nkσ )(n′k′σ ′) = 1

2Nk Nn
(Unn′ − δσσ ′U exch

nn′ ) cos2

(
π

εnk − E0

2�

)
cos2

(
π

εn′k′ − E0

2�

)
, (3)

for ∣∣∣∣εnk − E0

�

∣∣∣∣ � 1 and

∣∣∣∣εn′k′ − E0

�

∣∣∣∣ � 1, (4)

and zero otherwise, with U and U exch the Hartree and exchange terms (U � U exch � 0),
respectively. This implies that V state

tot ∝ U − 0.5U exch . Here, 2� is the total width of the
interaction resonance. (This corresponds to the lifetime of the resonantly trapped charge.
A Lorentzian would be a natural choice for the single-particle charge peak [3, 4] but the
cos2 eliminates cut-off problems at the interaction tails in the numerical implementation.)
One can see that, in contrast to the Anderson model with off-diagonal hopping terms, this
many-body problem is diagonal at the cost of a continuum (Nk → ∞) of interacting single-
particle base states. Since the underlying Hamiltonian of the presented model includes major
parts of the electron–electron interaction among all involved electronic states (propagating
through the dot and resonantly enhanced at certain energies) in a full many-body formulation,
this inherently accounts for screening effects (among these states) resulting from the given
Coulomb matrix. (On the other hand, one must also think of the model Coulomb matrix
as an effective interaction term including all further many-body screening effects due to the
environment, and other continuous states not included in the model. In this case, one has to
employ a screened Coulomb-kernel in the Coulomb matrix integrals. In any case, we assume
a resulting peaked effective interaction matrix element.)

In order to calculate transport properties of the model we consider a non-equilibrium (due
to a non-uniform chemical potential) many-body density matrix describing a thermodynamical
ensemble [30]:

ρ = 1

Z
exp(Ĥ), (5)

with the partition function Z = Tr[exp(Ĥ )]. (Note that, for the given form of Ĥ , this density
matrix has the maximum entropy form for the condition of individually given 〈c+

nkσ cnkσ 〉
and 〈Ĥ 〉 with Lagrange parameters µk and β, respectively.) Since Ĥ is a diagonal operator
with respect to the given basis we only need to evaluate an exponential function of real
numbers. (This is the main reason for the form chosen of the Hamiltonian. In the numerical
implementation, we have employed an ‘on-the-fly’ renormalization algorithm to avoid a
numerical over- or under-flow of the partition function.)

In the following, we will only consider single-particle observables like the current and
the spin polarization, which are linear functions of occupation numbers c+

nkσ cnkσ . Under this
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condition we can reformulate the many-body problem as an effective single-particle problem
with the following normalized Hamiltonian:

ĤM F = −β

[∑
n,k,σ

(εnkσ + wnkσ − µk)c
+
nkσ cnkσ

]
. (6)

Here, wnkσ denote Lagrange parameters for the condition

〈c+
nkσ cnkσ 〉 = 〈c+

nkσ cnkσ 〉M F (∀n, k, σ ) = fF D(εnkσ + wnkσ − µk; T ), (7)

so that the expectation values of all occupation numbers are identical for both Hamiltonians,
where fF D is the Fermi–Dirac function. So far, we have not made any further approximation.
As an intuitive approximation for the Lagrange parameters (in the limit Nk → ∞), we now
want to assume that wnkσ are linear functionals of all 〈c+

...c...〉 with

wnkσ [〈c+
...c...〉] =

∑
(n′k′σ ′) �=(nkσ )

V(nkσ )(n′k′σ ′)〈c+
n′k′σ ′cn′k′σ ′ 〉, (8)

which is nothing but the mean-field single-particle interaction potential. (Note however that
〈ĤM F〉M F �= 〈Ĥ〉 in general due to an ‘overcounting’ of the total interaction. Furthermore,
one has to note that we consider first order corrections due to the energetically peaked excess
interaction term here, whereas the Kondo effect of a magnetic impurity within an electron gas is
a correction to the mean-field Fermi liquid behaviour with a conventional Coulomb interaction
term.)

4. Occupation numbers

The peaked interaction model introduces characteristic modifications to the electronic structure
which will be discussed in this section. As a prototype system, we assume a linear dispersion in
the vicinity of a single sharp resonance in an open dot system with only one lateral mode in the
leads (Nn = 1). In all following simulations, we will employ the mean-field approximation
for Nk � 16 and the full density-matrix calculation for smaller Nk . The limitation of the
density-matrix approach to a small number of single-particle states is due to the exponentially
growing Fock space dimension (e.g., for Nk = 15 we obtain a 1.1 × 109-dimensional Fock
space). We employed a bit-mask integer representation of Fock basis states in the numerical
implementation. There is a very good agreement between these two approaches for Nk � 12,
with a deviation in the occupation numbers below 1%. Furthermore, the results converge in the
limit Nk → ∞ as expected from the size-scaling invariance mentioned above. All quantities
in the following simulations are taken as dimensionless real numbers, in order to be able to
map the results to any given experimental situation.

Figure 1 shows the typical electron filling behaviour of the peaked interaction model for
a simple example. The interaction resonance is located in the centre of the k-region. One can
clearly see the energetic shift of electrons in the presence of occupied states.

The shape of the occupation distribution as a function of k suggests the definition of
an effective single-particle dispersion ε

e f f
nkσ and temperature T ef f

nkσ , which are functions of the
chemical potentials µk and the real heat-bath temperature T , such that

〈c+
nkσ cnkσ 〉(µk, T ) = fF D(ε

ef f
nkσ (µk, T ) − µk; T ef f

nkσ (µk, T )). (9)

However, for k values where the occupation is still Fermi–Dirac-like (which is obviously
not the case in general when we have interacting electrons, but is a good approximation for
kB T 	 Vtot , �) ε

ef f
nkσ and T ef f

nkσ become independent of µk . Note that the effective dispersion
introduced here only visualizes modifications to the density of states at the Fermi energy
as compared to the free electron case (i.e., those k-states contribute to a change in the total
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Figure 1. Occupation number 〈c+
nkσ cnkσ 〉 as a function of the (common) chemical potential µ

(relative to E0) and the absolute value of the wavenumber k (relative to the interaction window) for
� = 0.4, U = 2.4, Uexch = 0.6U , kB T = 0.2 and Nk = 12 (i.e. ≈1.6 × 107-dimensional Fock
space).
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Figure 2. Effective dispersion ε
e f f
k (relative to E0) and effective temperature T ef f

k /T as a function
of the absolute value of k (relative to the interaction window) for � = 0.25, U = 1.0, Uexch = 0.5U ,
kB T = 0.4 and Nk = 512.

occupation for a given µ ± δµ where ε
ef f
nkσ ≈ µ). Characteristic features in ε

ef f
nkσ (such as

extrema) help to explain the temperature and chemical potential dependence of observables
below. However, since the effective dispersion is a function of T itself we cannot expect that
the temperature dependence of observables, such as the conductance, is simply given by the
Fermi–Dirac broadened function at T = 0. In figure 2, we show a typical example of the
effective dispersion and temperature. Note that the k-range shown is only a small fraction of
the total k-space in the vicinity of the interaction resonance (ε−k = εk and ε

ef f
−k = ε

e f f
k ) and

that the interaction-free case corresponds to a straight line.
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Figure 3. Normalized conductance as a function of the chemical potential µ (relative to E0) and
the temperature T for � = 0.4, U = 2.4, Uexch = 0.6U and Nk = 12.

5. Conductance

The current operator Î can be expressed in terms of the transmission probability tnkσ and the
group velocity vnkσ (derived from εnkσ ) of propagating states as

Î ∝
∑
n,k,σ

sign(k)vnkσ tnkσ c+
nkσ cnkσ . (10)

Hence the linear-response conductance reads (with �µ = µk>0 − µk<0)

G = d〈 Î (�µ)〉
d�µ

∣∣∣∣
�µ=0

. (11)

In order to clearly identify the influence of the interaction on the conductance (entering
through c+

nkσ cnkσ ), we set the transmission probability tkσ = 1 in the following examples.
For realistic simulations of a given quantum dot structure, one must consider a transmission
probability with a Fano resonance, which will imply further temperature dependence (due to
single-particle terms).

Figure 3 illustrates the behaviour of the normalized conductance with varying temperature
and chemical potential. One can clearly see an increasing effect with decreasing temperatures.
Due to the repulsive interaction, the density of states at energies at the lower end of the resonance
is reduced, hence the conductance is lowered (i.e., the resistance increases). This corresponds
to the steeper slope in the effective dispersion which can be seen in figure 2. Once the chemical
potential reaches the minimum in the effective dispersion (see figure 2) the density of states is
enhanced, which is reflected in the increased conductance in figure 3. The additional peak at
higher energies can be identified as the maximum of the effective dispersion (figure 2).

If we consider a Fano-type transmission probability, the interaction will modify the shape
of the conductance fluctuation and its temperature dependence for kB T → 0. In the following,
we will look more closely at the quantitative corrections to the conductance due to interaction
effects.
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Figure 4. Peak resistance and conductance as a function of temperature. Two temperature regimes
are clearly resolved (� = 0.25, U = 1.0, Uexch = 0.5U and Nk = 512).

A systematic analysis of the simulated temperature dependence of the conductance
modification with varying interaction energy and resonance width leads to the definition of a
characteristic energy scale for the maxima in the conductance kB T G

0 and the resistance kB T R
0 :

kB T G
0 = αG

√
�V state

tot , (12)

kB T R
0 = αR

√
�V state

tot , (13)

with fitting parameters αG ≈ 0.55 and αR ≈ 0.31. (One has to note that this temperature has
a form reminiscent of an effective Kondo temperature [20, 21, 23]. As the peaked-interaction
model has its roots in the Anderson Hamiltonian, we could expect a correspondence [31]). This
characteristic energy defines two temperature regimes. Figure 4 shows the typical dependence
of the conductance and resistance peaks on the temperature.

5.1. High temperatures (T > T0)

In figure 5, we show the typical line shape of the conductance fluctuation as a function of the
chemical potential. The parameters chosen provide V state

tot = 0.0846, kB T G
0 = 0.0798 and

kB T R
0 = 0.0457. At high temperatures, further fine structure in the conductance cannot be

further resolved.
In this temperature regime, we observe a modified Boltzmann law for the scaling of the

conductance and resistance peak G peak and R peak , respectively, as

G peak(T ) ∼= G(∞) exp

({
T G

0

T

}2)
, (14)

R peak(T ) ∼= R(∞) exp

({
T R

0

T

}2)
. (15)

Similar scaling behaviour of the conductance and resistance peaks has been observed in
experimental studies of coupled open quantum dots [7, 9–11].
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Uexch = 0.5U . Without exchange: U = 0.75, Uexch = 0. (V state

tot ∝ U − 0.5Uexch is constant.)

5.2. Low temperatures (T � T0)

The line shape of the conductance fluctuation as a function of the chemical potential is shown
in figure 6. V state

tot , kB T G
0 and kB T R

0 are identical to the high temperature case. Here, we have
assumed a spin splitting of �ε↑↓ = 0.002, in order to introduce a preferred spin direction.
At these temperatures, all the features of the effective dispersion relation are resolved (see
figure 2). The additional small third peak stems from the exchange-lowered interaction energy
for electrons with parallel spin alignment. (Note that, in this case, each spin direction σ has
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a different effective dispersion, reflecting the exchange lowering.) Further exchange-induced
effects will be discussed below in connection with spin polarization.

For low temperatures, there is a significantly different temperature dependence of the
conductance and the resistance peak, as can be seen in figures 4 and 6. While the conductance
exhibits a diverging sharply peaked fine structure for T → 0, the resistance maximum saturates
(similar to [15]). Simulations show that the saturation resistance can be expanded in terms of
a dimensionless parameter x ≡ V state

tot /� as

R peak(T → 0) ∼= 1 + βx + O(x2), (16)

and the numerically determined coefficient β ≈ 1.28 (for x � 4). The detailed scaling
behaviour of the conductance peaks is currently under investigation. Preliminary results
suggest an analogy to many-body corrections in quantum dots in the tunnelling regime [16–
21]. A connection to the effective exchange energy J [31] of the Anderson model might be of
some importance.

6. Spin polarization

Spin polarization in external magnetic fields gives further insight into the electronic structure
of the open quantum dot system (see [22] for a comparison with the magnetic properties of an
Anderson impurity). In our case, the characteristic temperature T0 separates two different
regimes in the response of the electron spins to a magnetic field. In the following we
discuss the influence of the field-induced spin splitting �ε↑↓ due to a small external field
B (�ε↑↓(B) < kB T ). We use a polarization S defined as

S = 1

2Nk Nn

∑
nkσ

sign(σ )〈c+
nkσ cnkσ 〉. (17)

6.1. High temperatures (T 	 T0)

In this temperature regime we observe Pauli spin paramagnetism with

χ ≡ dS

dB

∣∣∣∣
B=0

∝ (kB T )−1. (18)

6.2. Low temperatures (T � T0)

Depending on the exchange energy relative to the total interaction energy,the system can exhibit
an exchange-enhanced spin polarization. The total spin polarization is plotted in figure 7 as
function of the temperature for a small fixed (see above) magnetic field with varying energy
(but constant V state

tot ) as a parameter.

7. Conclusions

We have presented a many-body model for the description of electron interaction effects
in open quantum dot structures based on the Anderson Hamiltonian. The influence of
energetically peaked interaction terms on the conductance has been discussed as a function of
the temperature. The identification of characteristic temperature introduces an energy scale
to the system, separating different temperature regimes. Quantitative expressions for the
temperature dependence of interaction-introducedconductance fluctuations have been derived.
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A detailed comparison of experimental results with the predictions obtained from the peaked-
interaction model can be found in [32].

The extension of the model, with the inclusion of Fano resonances in the single-particle
transmission probability, is straightforward. Further investigations will discuss the role of spin–
orbit coupling terms and the significance of correlation terms in the interaction Hamiltonian.
Details of the conductance peak fine structure and the temperature dependence for T ≈ T0 and
T → 0 remain to be clarified.
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